CytoDataFrame at a Glance#

This notebook demonstrates various capabilities of CytoDataFrame using examples.

CytoDataFrame is intended to provide you a Pandas-like DataFrame experience which is enhanced with single-cell visual information which can be viewed directly in a Jupyter notebook.

import pathlib

import pandas as pd

from cytodataframe.frame import CytoDataFrame

# create paths for use with CytoDataFrames below
jump_data_path = "../../../tests/data/cytotable/JUMP_plate_BR00117006"
nf1_cellpainting_path = "../../../tests/data/cytotable/NF1_cellpainting_data_shrunken/"
nuclear_speckles_path = "../../../tests/data/cytotable/nuclear_speckles"
pediatric_cancer_atlas_path = (
    "../../../tests/data/cytotable/pediatric_cancer_atlas_profiling"
)
%%time
# view JUMP plate BR00117006 with images
frame = CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:3]
frame
CPU times: user 941 ms, sys: 713 ms, total: 1.65 s
Wall time: 525 ms

%%time
# view JUMP plate BR00117006 with images and overlaid outlines for segmentation
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    data_outline_context_dir=f"{jump_data_path}/images/outlines",
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:3]
CPU times: user 944 ms, sys: 723 ms, total: 1.67 s
Wall time: 505 ms

%%time
# view JUMP plate BR00117006 with images and overlaid outlines for segmentation
# and changing the color to something besides the default (default is green).
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    data_outline_context_dir=f"{jump_data_path}/images/outlines",
    display_options={"outline_color": (200, 100, 255)},
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:3]
CPU times: user 916 ms, sys: 696 ms, total: 1.61 s
Wall time: 491 ms

%%time
# view JUMP plate BR00117006 with images and overlaid outlines for segmentation
# and adding scale bars which show how micrometers scale to the pixels displayed.
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    data_outline_context_dir=f"{jump_data_path}/images/outlines",
    display_options={
        "pixel_per_um": 0.1550,
        "scale_bar": {
            "length_um": 100,
            "location": "lower right",
            "color": (255, 255, 255),
            "thickness_px": 2,
            "margin_px": 5,
        },
    },
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:3]
CPU times: user 892 ms, sys: 648 ms, total: 1.54 s
Wall time: 489 ms

%%time
# view JUMP plate BR00117006 with images and adjust the brightness
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    display_options={"brightness": 10},
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:3]
CPU times: user 951 ms, sys: 706 ms, total: 1.66 s
Wall time: 515 ms

%%time
# view JUMP plate BR00117006 with images and overlaid outlines for segmentation
# and removing the optional red center dot.
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    data_outline_context_dir=f"{jump_data_path}/images/outlines",
    display_options={"center_dot": False},
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:3]
CPU times: user 938 ms, sys: 676 ms, total: 1.61 s
Wall time: 497 ms

%%time
# view JUMP plate BR00117006 with images and change the display width
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    data_outline_context_dir=f"{jump_data_path}/images/outlines",
    display_options={"width": "100"},
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:3]
CPU times: user 905 ms, sys: 635 ms, total: 1.54 s
Wall time: 509 ms

%%time
# view JUMP plate BR00117006 with images, change the display height and width
# and also transpose for a different view of things.
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    data_outline_context_dir=f"{jump_data_path}/images/outlines",
    display_options={"width": "200px", "height": "auto"},
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:5].T
CPU times: user 889 ms, sys: 650 ms, total: 1.54 s
Wall time: 485 ms

%%time
# view JUMP plate BR00117006 with images, changing the bounding box
# using offsets so each image has roughly the same size.
CytoDataFrame(
    data=f"{jump_data_path}/BR00117006_shrunken.parquet",
    data_context_dir=f"{jump_data_path}/images/orig",
    data_outline_context_dir=f"{jump_data_path}/images/outlines",
    display_options={
        "offset_bounding_box": {
            "x_min": -20,
            "y_min": -20,
            "x_max": 20,
            "y_max": 20,
        },
    },
)[
    [
        "Metadata_ImageNumber",
        "Cells_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
        "Image_FileName_OrigRNA",
    ]
][:5]
CPU times: user 890 ms, sys: 653 ms, total: 1.54 s
Wall time: 491 ms

%%time
# view NF1 Cell Painting data with images
CytoDataFrame(
    data=f"{nf1_cellpainting_path}/Plate_2_with_image_data_shrunken.parquet",
    data_context_dir=f"{nf1_cellpainting_path}/Plate_2_images",
)[
    [
        "Metadata_ImageNumber",
        "Metadata_Cells_Number_Object_Number",
        "Image_FileName_GFP",
        "Image_FileName_RFP",
        "Image_FileName_DAPI",
    ]
][:3]
CPU times: user 293 ms, sys: 198 ms, total: 492 ms
Wall time: 173 ms

%%time
# view NF1 Cell Painting data with images and overlaid outlines from masks
CytoDataFrame(
    data=f"{nf1_cellpainting_path}/Plate_2_with_image_data_shrunken.parquet",
    data_context_dir=f"{nf1_cellpainting_path}/Plate_2_images",
    data_mask_context_dir=f"{nf1_cellpainting_path}/Plate_2_masks",
)[
    [
        "Metadata_ImageNumber",
        "Metadata_Cells_Number_Object_Number",
        "Image_FileName_GFP",
        "Image_FileName_RFP",
        "Image_FileName_DAPI",
    ]
][:3]
CPU times: user 273 ms, sys: 208 ms, total: 481 ms
Wall time: 149 ms

%%time
# add active paths on the local system to show how CytoDataFrame
# may be used without specifying a context directory for images.
# Note: normally these paths are local to the system where the
# profile data was generated, which often is not the same as the
# system which will be used to analyze the data.
parquet_path = f"{nf1_cellpainting_path}/Plate_2_with_image_data_shrunken.parquet"
nf1_dataset_with_modified_image_paths = pd.read_parquet(path=parquet_path)
nf1_dataset_with_modified_image_paths.loc[
    :, ["Image_PathName_DAPI", "Image_PathName_GFP", "Image_PathName_RFP"]
] = f"{pathlib.Path(parquet_path).parent}/Plate_2_images"

# view NF1 Cell Painting data with images and overlaid outlines from masks
CytoDataFrame(
    # note: we can read directly from an existing Pandas DataFrame
    data=nf1_dataset_with_modified_image_paths,
    data_mask_context_dir=f"{nf1_cellpainting_path}/Plate_2_masks",
)[
    [
        "Metadata_ImageNumber",
        "Metadata_Cells_Number_Object_Number",
        "Image_FileName_GFP",
        "Image_FileName_RFP",
        "Image_FileName_DAPI",
    ]
][:3]
CPU times: user 287 ms, sys: 186 ms, total: 473 ms
Wall time: 174 ms

%%time
# view nuclear speckles data with images and overlaid outlines from masks
CytoDataFrame(
    data=f"{nuclear_speckles_path}/test_slide1_converted.parquet",
    data_context_dir=f"{nuclear_speckles_path}/images/plate1",
    data_mask_context_dir=f"{nuclear_speckles_path}/masks/plate1",
)[
    [
        "Metadata_ImageNumber",
        "Nuclei_Number_Object_Number",
        "Image_FileName_A647",
        "Image_FileName_DAPI",
        "Image_FileName_GOLD",
    ]
][:3]
CPU times: user 81.2 ms, sys: 15 ms, total: 96.2 ms
Wall time: 67.1 ms

%%time
# view ALSF pediatric cancer atlas plate BR00143976 with images
cdf = CytoDataFrame(
    data=f"{pediatric_cancer_atlas_path}/BR00143976_shrunken.parquet",
    data_context_dir=f"{pediatric_cancer_atlas_path}/images/orig",
    data_outline_context_dir=f"{pediatric_cancer_atlas_path}/images/outlines",
    segmentation_file_regex={
        r"CellsOutlines_BR(\d+)_C(\d{2})_\d+\.tiff": r".*ch3.*\.tiff",
        r"NucleiOutlines_BR(\d+)_C(\d{2})_\d+\.tiff": r".*ch5.*\.tiff",
    },
)[
    [
        "Metadata_ImageNumber",
        "Metadata_Nuclei_Number_Object_Number",
        "Image_FileName_OrigAGP",
        "Image_FileName_OrigDNA",
    ]
]
cdf
CPU times: user 406 ms, sys: 292 ms, total: 698 ms
Wall time: 225 ms

%%time
# show that we can use the cytodataframe again
# by quick variable reference.
cdf
CPU times: user 1 µs, sys: 1 µs, total: 2 µs
Wall time: 1.91 µs