transform
transforms observation variables based on the specified
transformation method.
transform(population, variables, operation = "generalized_log", ...)
population | tbl with grouping (metadata) and observation variables. |
---|---|
variables | character vector specifying observation variables. |
operation | optional character string specifying method for transform.
This must be one of the strings |
... | arguments passed to transformation operation. |
transformed data of the same class as population
.
population <- tibble::tibble( Metadata_Well = c("A01", "A02", "B01", "B02"), Intensity_DNA = c(8, 20, 12, 32), Intensity_RNA = c(1, 12, -1, 4), Intensity_AGP = c(-2, 5, -5, -2), Intensity_Mito = c(-1, 15, 5, 22), Intensity_ER = c(-12, 15, -25, 24) ) variables <- c("Intensity_DNA", "Intensity_RNA", "Intensity_AGP", "Intensity_ER") transform(population, variables, operation = "generalized_log")#> # A tibble: 4 x 6 #> Metadata_Well Intensity_DNA Intensity_RNA Intensity_AGP Intensity_Mito #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 A01 2.08 0.188 -2.14 -1 #> 2 A02 3.00 2.49 1.62 15 #> 3 B01 2.49 -1.57 -3.01 5 #> 4 B02 3.47 1.40 -2.14 22 #> # … with 1 more variable: Intensity_ER <dbl>transform(population, variables, sample = population, operation = "husk", remove_outliers = FALSE)#> # A tibble: 4 x 6 #> Metadata_Well Intensity_Mito V1 V2 V3 V4 #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 A01 -1 -0.636 -0.292 0.167 1.39e-17 #> 2 A02 15 1.09 -0.551 -0.0552 1.39e-17 #> 3 B01 5 -1.03 0.0465 -0.143 -2.78e-17 #> 4 B02 22 0.581 0.796 0.0314 2.78e-17transform(population, variables, sample = population, operation = "spherize")#> # A tibble: 4 x 6 #> Metadata_Well Intensity_Mito PC1 PC2 PC3 PC4 #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 A01 -1 0.622 -0.427 1.21 8.33e-15 #> 2 A02 15 -0.626 -1.17 -0.631 3.66e-15 #> 3 B01 5 1.05 0.576 -0.836 -1.20e-14 #> 4 B02 22 -1.05 1.02 0.255 -2.22e-16transform(population, variables, n_components = 2, operation = "sparse_random_projection")#> # A tibble: 4 x 4 #> Metadata_Well Intensity_Mito R1 R2 #> <chr> <dbl> <dbl> <dbl> #> 1 A01 -1 -4 2 #> 2 A02 15 35 -5 #> 3 B01 5 -13 5 #> 4 B02 22 56 2