
Single-cell Morphology Quality Control (coSMicQC)
Dave Bunten¹*, Jenna Tomkinson¹*, Vincent Rubinetti¹, Gregory Way¹
¹Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus
*These authors contributed equally to this work.

I. Erroneous outliers and analysis

Figure 1: Extra clustering islands can be seen when looking
at morphological profiles linked to poor segmentation,
which when removed, better reveal patterns in the data.

Segmentation errors during single-cell morphology image
analysis such as misidentifying cell compartments or
artifacts as cells can lead to inaccurate single-cell
measurements and erroneous anomalies within the data
(Figure 1). If single-cell quality control is performed, it often
uses bespoke methods or aggregate data into bulk profiles
to avoid discrepancies caused by anomaly outliers. These
techniques make it challenging to perform quality control
on the data, impeding the potential for meaningful
discoveries.

II. Single-cell quality control package

To address these challenges, we introduce coSMicQC
(Single-cell Morphology Quality Control), an open source
Python package designed to enhance the accuracy
of single-cell morphology analysis. coSMicQC offers
default and customizable thresholds for quality control,
integrating seamlessly into both command line and
Python API workflows.

III. Getting started with coSMicQC

☆ 1) Installation

pip install from pypi
pip install coSMicQC

or install directly from source
pip install git+https://github.com/WayScience/
coSMicQC.git

coSMicQC may be installed from PyPI or source.

☆ 2) Finding outliers

import cosmicqc
find outliers from single-cell profiles
scdf = cosmicqc.analyze.find_outliers(
 df="single-cell-profiles.parquet",
 metadata_columns=[
 "Metadata_ImageNumber",
 "Image_Metadata_Plate_x"
],
 feature_thresholds={
 "Nuclei_AreaShape_Area": -1},
)

Figure 2: The find_outliers function in coSMicQC uses
single-cell feature thresholds to provide a report on how
many outliers were detected (Python API or CLI). We
use z-scores to help define thresholds used throughout
coSMicQC.

CLI interface for coSMicQC find_outliers
$ cosmicqc find_outliers \
 --df single-cell-profiles.parquet \
 --metadata_columns \[Metadata_ImageNumber\] \
 --feature_thresholds '{"Nuclei_AreaShape_Area":
-1}'

Number of outliers: 328 (19.14%)
Outliers Range:
Nuclei_AreaShape_Area Min: 734.0
...

☆ 3) Visualizing outlier distributions

import cosmicqc
label and show outliers within the profiles
scdf = cosmicqc.analyze.label_outliers(
 df="single-cell-profiles.parquet",
 include_threshold_scores=True,
).show_report()

Figure 3: coSMicQC enables erroneous anomaly
analysis through the label_outliers function, which
appends z-score data for features, and the
CytoDataFrame.show_report method to visualize where
outliers are detected within the dataset.

☆ 4) Understanding outlier segmentations

import cosmicqc

passing image and mask dirs to display images
cosmicqc.CytoDataFrame(
 data="single-cell-profiles.parquet",
 data_context_dir="./image_directory/",
 data_mask_context_dir="./mask_directory/",
)

Figure 4: Interactive visualizations that help users identify
outlier distributions through the CytoDataFrame — a
novel data format that links single-cell measurements with
their corresponding images and segmentation masks in
real-time, enriching data analysis and interpretation.

IV. Real-world applications

Figure 5: This figure displays the Receiver Operating
Characteristic (ROC) Area Under the Curve (AUC) scores
for multiple random samples from a holdout dataset
that has undergone quality control (QC). The ROC AUC
scores are compared between models trained with QC
(QC model) and those trained without QC (no-QC model).
The QC model demonstrates superior performance, with
consistently higher average ROC AUC scores compared to
the no-QC model. Statistical analysis reveals a significant
difference in performance, with a t-statistic of −72.1 and a
p-value of 0.0, indicating that the QC model’s enhancement
is statistically robust. This highlights the effectiveness of
applying QC to improve model accuracy and reliability.

Figure 6: Single-cell segmentations (nuclei) were evaluated
with coSMicQC, identifying which passed (green) or failed
(red) quality control (QC) criteria. The left panel showcases
field-of-view (FOV) images displaying nuclei from a more
standard phenotype while the right panel shows nuclei
from a sample with an unusual phenotype. These results
illustrate how coSMicQC effectively distinguishes between
high- and low-quality segmentations, aiding in the accurate
identification of outliers and ensuring the reliability of
downstream analysis for complex biological datasets.

Figure 7: Applying coSMicQC to the JUMP dataset
BR00117012 (cpg0000) reveals erroneous outliers, which
are highlighted in yellow in the left panel. These outliers
significantly impact the UMAP embeddings by altering the
spatial distribution of data points. Specifically, the presence
of outliers causes shifts in cluster locations or even their
removal from the embeddings. In the right panel, orange
points represent UMAP embeddings that include these
outliers, while blue points denote embeddings generated
after removing outliers. Some exemplary areas of significant
change are circled in purple within the right panel.

V. Acknowledgements

Special thanks goes to the following for their help in
contributing to the coSMicQC inspiration, development,
or related work.

• CU Anschutz CFReT: Timothy A. McKinsey, Josh
Travers

• iNFixion: Michelle Mattson-Hoss, Herb Sarnoff
• Cold Spring Harbor Laboratory: Katherine Alexander
• JUMP-Cell Painting Consortium: Chandrasekaran et al.,

2024 (cpg0000)
• St. Jude Children’s Research Hospital: Adam D. Durbin,

Ha Won Lee, Taosheng Chen, and Noha Shendy

https://github.com/WayScience/coSMicQC Way Lab https://www.waysciencelab.com

	Erroneous outliers and analysis
	Single-cell quality control package
	Getting started with coSMicQC
	Installation
	Finding outliers
	Visualizing outlier distributions
	Understanding outlier segmentations

	Real-world applications
	Acknowledgements

