
Cross-language Data
Grammar for Single-cell
Research Feature
Engineering
Dave Bunten 1, 

Faisal Alquaddoomi 1, 

Gregory P. Way 1, 

1 Department of Biomedical Informatics, University of Colorado Anschutz

Introduction

Cell Images

CSV Files

NPZ Files

SQLite FilesFeature
extraction

- Large scale
- Schema diff.

- API diff.

Figure 1. A diagram showing many different feature data and common challenges.

Research in the Way Lab involves intensive data engineering over
high-dimensional single-cell morphology data from large-scale
microscopy drug screening applications. Software development
surrounding this work often entails scalability (larger than
memory data handling) and understandability (syntax complexity
and software sustainability) challenges.

Solution design

+ =data syntax output

Figure 2. A diagram illustrating data grammar as an abstract linguistic algorithm.

To address these challenges we have developed a python
package called CytoTable which implements “cross-language
data grammar” capabilities (vocabulary + syntax = output)
orchestrated with Parsl workflows. Our vision is for CytoTable to
increase data consistency and processing capabilities, enabling
more scientists quick access to single-cell insights from
microscopy images.

 Data: Apache Arrow

Figure 3. Chart showing relative memory size for data using various Python libraries.

Apache Arrow represents a new frontier for data implementation
flexibility, enabling a unified, multi-language, zero-copy format for
in-memory analysis. Arrow is like a high-performance Pandas
dataframe which may be used across languages with fewer
scalability challenges.

 Syntax: DuckDB SQL

Figure 4. Chart showing read time durations of Pandas and DuckDB with SQLite databases of various sizes.

Structured Query Language (SQL) through DuckDB provides an
Arrow-compatible embedded database system optimized for
vectorized execution. DuckDB delivers in-memory manipulation
capabilities through a SQL interface, treating variable data as a
loose collection of database tables without needing conversion.

 Output: Apache Parquet

Figure 5. Chart showing read time durations for data from various file formats.

Work is saved in Apache Parquet files, which are compatible with
Apache Arrow, and designed for storage and retrieval efficiency.
Parquet is a columnar data format which may be partitioned
across one or many files.

Acknowledgements

Special thanks goes to the following for their help in contributing
to CytoTable design and development or related work.

The Way Lab: Erik Serrano, Jenna Tomkinson
The Broad Institute: Shantanu Singh, Beth Cimini
DBMI Software Engineering Team: Vince Rubinetti (logo design)

CytoTable implements
data grammar through
Apache Arrow, DuckDB
SQL, Apache Parquet via
Parsl workflows for
increased research
velocity, cross-language
integration, and
understandability.

https://orcid.org/0000-0001-6041-3665
https://orcid.org/0000-0003-4297-8747
https://orcid.org/0000-0002-0503-9348
https://www.waysciencelab.com/
https://github.com/cytomining/CytoTable
https://github.com/Parsl/parsl
https://arrow.apache.org/
https://duckdb.org/
https://parquet.apache.org/
https://www.waysciencelab.com/
https://www.broadinstitute.org/
https://cu-dbmi.github.io/set-website/

